Goodness-of-Fit Tests for Symmetric Stable Distributions – Empirical Characteristic Function Approach

نویسندگان

  • Muneya MATSUI
  • Akimichi TAKEMURA
چکیده

We consider goodness-of-fit tests of symmetric stable distributions based on weighted integrals of the squared distance between the empirical characteristic function of the standardized data and the characteristic function of the standard symmetric stable distribution with the characteristic exponent α estimated from the data. We treat α as an unknown parameter, but for theoretical simplicity we also consider the case that α is fixed. For estimation of parameters and the standardization of data we use maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE) which minimizes the weighted integral. We derive the asymptotic covariance function of the characteristic function process with parameters estimated by MLE and EISE. For the case of MLE, the eigenvalues of the covariance function are numerically evaluated and asymptotic distribution of the test statistic is obtained using complex integration. Simulation studies show that the asymptotic distribution of the test statistics is very accurate. We also present a formula of the asymptotic covariance function of the characteristic function process with parameters estimated by an efficient estimator for general distributions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Goodness-of-Fit Test for a Distribution by the Empirical Characteristic Function

Extended Abstract. Suppose n i.i.d. observations, X1, …, Xn, are available from the unknown distribution F(.), goodness-of-fit tests refer to tests such as H0 : F(x) = F0(x) against H1 : F(x) $neq$ F0(x). Some nonparametric tests such as the Kolmogorov--Smirnov test, the Cramer-Von Mises test, the Anderson-Darling test and the Watson test have been suggested by comparing empirical ...

متن کامل

Tests of Fit for Normal Variance Inverse Gaussian Distributions

Goodness–of–fit tests for the family of symmetric normal variance inverse Gaussian distributions are constructed. The tests are based on a weighted integral incorporating the empirical characteristic function of suitably standardized data. An EM– type algorithm is employed for the estimation of the parameters involved in the test statistic. Monte Carlo results show that the new procedure is com...

متن کامل

On the Canonical-Based Goodness-of-fit Tests for Multivariate Skew-Normality

It is well-known that the skew-normal distribution can provide an alternative model to the normal distribution for analyzing asymmetric data. The aim of this paper is to propose two goodness-of-fit tests for assessing whether a sample comes from a multivariate skew-normal (MSN) distribution. We address the problem of multivariate skew-normality goodness-of-fit based on the empirical Laplace tra...

متن کامل

Empirical characteristic function-based tests for multivariate stable distributions

We consider goodness–of–fit testing for multivariate stable distributions. The proposed test statistics exploit a characterizing property of the characteristic function of these distributions and are consistent under some conditions. The asymptotic distribution is derived under the null hypothesis as well as under local alternatives. Conditions for an asymptotic null distribution free of parame...

متن کامل

Tests for normal mixtures based on the empirical characteristic function

A goodness–of–fit test for two–component homoscedastic and homothetic mixtures of normal distributions is proposed. The tests are based on a weighted L2–type distance between the empirical characteristic function and its population counterpart, where in the latter, parameters are replaced by consistent estimators. Consequently the resulting tests are consistent against general alternatives. Whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005